Wheat yields are stagnating or declining in many regions, requiring efforts to improve the light conversion efficiency, known as radiation use efficiency (RUE). RUE is a key trait in plant physiology because it links light capture and primary metabolism with biomass accumulation and yield, but its measurement is time consuming and this has limited its use in fundamental research and large-scale physiological breeding. In this study, high-throughput plant phenotyping (HTPP) approaches were used among a population of field-grown wheat with variation in RUE and photosynthetic traits to build predictive models of RUE, biomass, and intercepted photosynthetically active radiation (IPAR). Three approaches were used: best combination of sensors; canopy vegetation indices; and partial least squares regression. The use of remote sensing models predicted RUE with up to 70% accuracy compared with ground truth data. Water indices and canopy greenness indices [normalized difference vegetation index (NDVI), enhanced vegetation index (EVI)] are the better option to predict RUE, biomass, and IPAR, and indices related to gas exchange, non-photochemical quenching [photochemical reflectance index (PRI)] and senescence [structural-insensitive pigment index (SIPI)] are better predictors for these traits at the vegetative and grain-filling stages, respectively. These models will be instrumental to explain canopy processes, improve crop growth and yield modelling, and potentially be used to predict RUE in different crops or ecosystems.
Field-based remote sensing models predict radiation use efficiency in wheat.
阅读:6
作者:Robles-Zazueta Carlos A, Molero Gemma, Pinto Francisco, Foulkes M John, Reynolds Matthew P, Murchie Erik H
| 期刊: | Journal of Experimental Botany | 影响因子: | 5.700 |
| 时间: | 2021 | 起止号: | 2021 May 4; 72(10):3756-3773 |
| doi: | 10.1093/jxb/erab115 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
