In this paper, we present the concept of the logical entropy of order m, logical mutual information, and the logical entropy for information sources. We found upper and lower bounds for the logical entropy of a random variable by using convex functions. We show that the logical entropy of the joint distributions X1 and X2 is always less than the sum of the logical entropy of the variables X1 and X2. We define the logical Shannon entropy and logical metric permutation entropy to an information system and examine the properties of this kind of entropy. Finally, we examine the amount of the logical metric entropy and permutation logical entropy for maps.
Logical Entropy of Information Sources.
阅读:4
作者:Xu Peng, Sayyari Yamin, Butt Saad Ihsan
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2022 | 起止号: | 2022 Aug 23; 24(9):1174 |
| doi: | 10.3390/e24091174 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
