The sample-based quantum diagonalization (SQD) method shows great promise in quantum-centric simulations of ground state energies in molecular systems. Inclusion of solute-solvent interactions in simulations of electronic structure is critical for biochemical and medical applications. However, all of the previous applications of the SQD method were shown for gas-phase simulations of the electronic structure. The present work aims to bridge this gap by introducing the integral equation formalism polarizable continuum model (IEF-PCM) of solvent into the SQD calculations. We perform SQD/cc-pVDZ IEF-PCM simulations of methanol, methylamine, ethanol, and water in aqueous solution using quantum hardware and compare our results to CASCI/cc-pVDZ IEF-PCM simulations. Our simulations on ibm_cleveland, ibm_kyiv, and ibm_marrakesh quantum devices are performed with 27, 30, 41, and 52 qubits demonstrating the scalability of SQD IEF-PCM simulations.
Implicit Solvent Sample-Based Quantum Diagonalization.
阅读:6
作者:Kaliakin Danil, Shajan Akhil, Liang Fangchun, Merz Kenneth M Jr
| 期刊: | Journal of Physical Chemistry B | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 12; 129(23):5788-5796 |
| doi: | 10.1021/acs.jpcb.5c01030 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
