Differentially Private Singular Value Decomposition for Training Support Vector Machines.

阅读:4
作者:Sun Zhenlong, Yang Jing, Li Xiaoye
Support vector machine (SVM) is an efficient classification method in machine learning. The traditional classification model of SVMs may pose a great threat to personal privacy, when sensitive information is included in the training datasets. Principal component analysis (PCA) can project instances into a low-dimensional subspace while capturing the variance of the matrix A as much as possible. There are two common algorithms that PCA uses to perform the principal component analysis, eigenvalue decomposition (EVD) and singular value decomposition (SVD). The main advantage of SVD compared with EVD is that it does not need to compute the matrix of covariance. This study presents a new differentially private SVD algorithm (DPSVD) to prevent the privacy leak of SVM classifiers. The DPSVD generates a set of private singular vectors that the projected instances in the singular subspace can be directly used to train SVM while not disclosing privacy of the original instances. After proving that the DPSVD satisfies differential privacy in theory, several experiments were carried out. The experimental results confirm that our method achieved higher accuracy and better stability on different real datasets, compared with other existing private PCA algorithms used to train SVM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。