The major facilitator superfamily (MFS) type efflux pumps of Acinetobacter baumannii play important roles in antibiotic resistance. However, the molecular mechanism of these transporters remains poorly understood. To address the molecular basis of substrate polyspecificity mediated by multidrug MFS transporters, we compared the substrate binding modes of A. baumannii CraA with its well-studied homolog, Escherichia coli MdfA. MdfA and CraA share similar structural features, including a cavity accessible to drugs from the cytoplasm when these transporters adopt the inside-out conformation. This predominantly hydrophobic cavity contains several distinct titratable and hydrophilic residues. Through substitution analysis, we demonstrate that these polar residues within the CraA drug binding cavity contribute to the transport of all tested drugs, whereas mutations of hydrophobic residues result in altered drug recognition profiles. In addition to the known titratable residues E38 and D46, we identified E338 as the only titratable residue that plays a substrate-specific role, as it is required for efficient transport of norfloxacin, but not ethidium. Substitution of E338 with asparagine or glutamine changes substrate specificity, enabling specific recognition of phenicols and mitomycin C. Furthermore, we show that the aromaticity of Y42 is crucial for phenicol recognition, while general hydrophobicity at this position is critical for mitomycin C specificity. We propose that E338 and Y42 function as key substrate selectivity determinants in CraA.IMPORTANCEMultidrug efflux transporters of the major facilitator superfamily (MFS) are key contributors to antibiotic resistance, mediating the export of structurally diverse compounds across bacterial membranes. While homologous transporters such as Escherichia coli MdfA and Acinetobacter baumannii CraA share high structural similarity and overlapping substrate profiles, the molecular basis of their substrate specificity remains poorly understood. In this study, we show that structural homology among MFS transporters does not inherently imply mechanistic conservation, as species-specific variations can give rise to distinct substrate recognition profiles. Our findings reveal that CraA utilizes unique residues Y42 and E338 for substrate selectivity, while R124 and Y73 contribute to its transport activity. These findings enhance our understanding of efflux pump specificity and underscore the need to consider organism-specific features when targeting multidrug transporters in antimicrobial therapy.
Molecular determinants of substrate specificity in the efflux pump CraA from Acinetobacter baumannii.
阅读:3
作者:Foong Wuen Ee, Xiang Xinxin, Pos Klaas M, Tam Heng-Keat
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 13(8):e0111925 |
| doi: | 10.1128/spectrum.01119-25 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
