Robust inference for skewed data in health sciences.

阅读:4
作者:Nandy Amarnath, Basu Ayanendranath, Ghosh Abhik
Health data are often not symmetric to be adequately modeled through the usual normal distributions; most of them exhibit skewed patterns. They can indeed be modeled better through the larger family of skew-normal distributions covering both skewed and symmetric cases. Since outliers are not uncommon in complex real-life experimental datasets, a robust methodology automatically taking care of the noises in the data would be of great practical value to produce stable and more precise research insights leading to better policy formulation. In this paper, we develop a class of robust estimators and testing procedures for the family of skew-normal distributions using the minimum density power divergence approach with application to health data. In particular, a robust procedure for testing of symmetry is discussed in the presence of outliers. Two efficient computational algorithms are discussed. Besides deriving the asymptotic and robustness theory for the proposed methods, their advantages and utilities are illustrated through simulations and a couple of real-life applications for health data of athletes from Australian Institute of Sports and AIDS clinical trial data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。