Chiral Polymers Based on Vinyl[2.2]paracyclophane and Their Application as CPL Emitters.

阅读:10
作者:Tappert Henrik, Puttock Emma V, Oviedo Ortiz Jhon Sebastian, Zysman-Colman Eli, Crassous Jeanne, Bräse Stefan
Chiral molecules are integral to various biological and artificial systems, influencing processes from chemical production to optical activities. In this study, we explore the potential of chiral vinyl[2.2]paracyclophane (vinyl-PCP) as a monomer for the synthesis of homopolymers and copolymers with styrene. We achieved polymerization through anionic, cationic, and radical methods. The resulting polymers demonstrated significant chiral properties, even in copolymers with small fractions of the chiral monomer. Further, we developed a polymerizable vinyl emitter from 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-TRZ) through a two-step synthesis with an overall yield of 48%. Copolymerization with chiral vinyl-PCP resulted in emissive polymers that demonstrated circularly polarized luminescence (CPL) properties. The inclusion of the chiral PCP monomer, acting both as a host material and the source of chirality for CPL, enhanced the photoluminescence quantum yield (PLQY) to 47.2% in N(2) at 5-10% emitter content, compared to 26.8% for the pure emitter polymer. CPL-active polymers show clear mirror-image Cotton effects at 240 nm and 267 nm and dissymmetry factors around +2 × 10(-4) and -1 × 10(-4). This self-hosting effect of PCP monomers underscores the potential of chiral vinyl-PCP for advanced functional materials in optical communication and bio-responsive imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。