Incorporating biobased nanofillers including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) into nonisocyanate polyurethane (NIPU) offers a multifunctional approach to improving mechanical and thermal properties while promoting sustainability and green chemistry. Nanocomposites of segmented thermoplastic polyhydroxyurethane (PHU) from vanillyl alcohol bis(cyclocarbonate) (VABC), poly(tetramethylene oxide) diamine (PTMODA), and bis(aminomethyl) norbornane (NORB) reinforced with a low amount of CNCs and partially deacetylated ChNCs were prepared and characterized. Fourier transform infrared spectroscopy, atomic force microscopy, and small-angle X-ray scattering revealed that partially deacetylated ChNCs were covalently grafted to the PHU through aminolysis of carbonate end groups in the hard segment, while CNCs were mixed with the PHU without interfacial covalent bonding. Consequently, the PHU/ChNC nanocomposites showed nanophase separation with smaller hard domains compared to neat PHU, while the PHU/CNC nanocomposites exhibited a phase-mixed system with broader interface regions. Dynamic mechanical analysis and tensile tests further revealed that the PHU/ChNC nanocomposites demonstrated a 49-fold increase in Young's modulus, a 20-fold increase in ultimate tensile strength, and a three-order-of-magnitude enhancement in storage modulus in the rubbery state compared to the PHU/CNC nanocomposites, highlighting the profound influence of interfacial covalent linkages in enhancing the thermal mechanical performance of segmented PHU.
Synthesis, Thermal and Mechanical Properties of Nonisocyanate Thermoplastic Polyhydroxyurethane Nanocomposites with Cellulose Nanocrystals and Chitin Nanocrystals.
阅读:11
作者:Wijeratne Pavithra M, Ocando Connie, Grignard Bruno, Berglund Lars A, Raquez Jean-Marie, Zhou Qi
| 期刊: | Biomacromolecules | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Jun 9; 26(6):3481-3494 |
| doi: | 10.1021/acs.biomac.5c00113 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
