The catalytic properties of metallophthalocyanine (MPc) complexes have long been applied to electrochemical sensing of nitric oxide (NO) to amplify sensitivity and reduce the substantial overpotential required for NO oxidation. The latter point has significant ramifications for in situ amperometric detection, as large working potentials oxidize biological interferents (e.g., nitrite, L-ascorbate, and carbon monoxide). Herein, we sought to isolate and quantify, for the first time, the selectivity benefits of MPc modification of glassy carbon electrodes. A series of the most catalytically active MPc complexes towards NO, including Fe(II)Pc, Co(II)Pc, Ni(II)Pc, and Zn(II)Pc, was selected and probed for NO sensing ability under both differential pulse voltammetry (DPV) and constant potential amperometry (CPA). Data from DPV measurements provided information with respect to MPc signal sensitivity amplification (~1.5Ã) and peak shifting (100-200 mV). Iron-Pc exerted the most specific catalytic activity towards NO over nitrite. Catalyst-enabled reduction of the working potential under CPA was found to improve selectivity for NO over high potential interferents, regardless of MPc. However, impaired selectivity against low potential interferents was also noted.
Catalytic selectivity of metallophthalocyanines for electrochemical nitric oxide sensing.
阅读:5
作者:Brown Micah D, Schoenfisch Mark H
| 期刊: | Electrochimica Acta | 影响因子: | 5.600 |
| 时间: | 2018 | 起止号: | 2018 May 20; 273:98-104 |
| doi: | 10.1016/j.electacta.2018.03.139 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
