SIGNIFICANCE: Hyperspectral imaging (HSI) provides rich spectral information for improved histopathological cancer detection. However, acquiring high-resolution HSI data for whole-slide imaging (WSI) can be time-consuming and requires a huge amount of storage space. AIM: WSI using a color camera can be achieved with fast speed, high image resolution, and excellent image quality due to the established techniques. We aim to develop an RGB-guided unsupervised hyperspectral super-resolution reconstruction method that is hypothesized to improve image quality while maintaining the spectral characteristics. APPROACH: High-resolution hyperspectral images of 32 histologic slides were obtained via automated WSI. High-resolution RGB histology images were registered to the hyperspectral images for RGB guidance. An unsupervised super-resolution network was trained to take the downsampled low-resolution hyperspectral patches (LR-HSI) and high-resolution RGB patches (HR-RGB) as inputs to reconstruct high-resolution hyperspectral patches (HR-HSI). Then, an Inception-based network was trained with the HR-RGB, original HR-HSI, and generated HR-HSI, respectively, for whole-slide histopathological cancer detection. RESULTS: Our super-resolution reconstruction network generated high-resolution hyperspectral images with well-maintained spectral characteristics and improved image quality. Image classification using the original hyperspectral data outperformed RGB because of the extra spectral information. The generated hyperspectral image patches further improved the results. CONCLUSIONS: The proposed method potentially reduces image acquisition time, saves storage space without compromising image quality, and improves the image classification performance.
Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging.
阅读:6
作者:Ma Ling, Rathgeb Armand, Mubarak Hasan, Tran Minh, Fei Baowei
| 期刊: | Journal of Biomedical Optics | 影响因子: | 2.900 |
| 时间: | 2022 | 起止号: | 2022 May |
| doi: | 10.1117/1.JBO.27.5.056502 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
