Retention in gas-liquid chromatography is mainly governed by the extent of intermolecular interactions between the solute and the stationary phase. While molecular descriptors of computational origin are commonly used to encode the effect of the solute structure in quantitative structure-retention relationship (QSRR) approaches, characterisation of stationary phases is historically based on empirical scales, the McReynolds system of phase constants being one of the most popular. In this work, poly(siloxane) stationary phases, which occupy a dominant position in modern gas-liquid chromatography, were characterised by theoretical molecular descriptors. With this aim, the first five McReynolds constants of 29 columns were modelled by multilinear regression (MLR) coupled with genetic algorithm (GA) variable selection applied to the molecular descriptors provided by software Dragon. The generalisation ability of the established GA-MLR models, evaluated by both external prediction and repeated calibration/evaluation splitting, was better than that reported in analogous studies regarding nonpolymeric (molecular) stationary phases. Principal component analysis on the significant molecular descriptors allowed to classify the poly(siloxanes) according to their chemical composition and partitioning properties. Development of QSRR-based models combining molecular descriptors of both solutes and stationary phases, which will be applied to transfer retention data among different columns, is in progress.
Characterisation of Gas-Chromatographic Poly(Siloxane) Stationary Phases by Theoretical Molecular Descriptors and Prediction of McReynolds Constants.
阅读:8
作者:D'Archivio Angelo A, Giannitto Andrea
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2019 | 起止号: | 2019 Apr 29; 20(9):2120 |
| doi: | 10.3390/ijms20092120 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
