Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst.

阅读:9
作者:Li Guodong, Han Guanqun, Wang Lu, Cui Xiaoyu, Moehring Nicole K, Kidambi Piran R, Jiang De-En, Sun Yujie
The broad employment of water electrolysis for hydrogen (H(2)) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu(3)Ag(7) electrocatalyst. Such a strategy not only produces more valuable anodic product than O(2) but also releases H(2) at the anode with a small voltage input. Density functional theory studies indicate the H(2)C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu(3)Ag(7) than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu(3)Ag(7)(+)||Ni(3)N/Ni(-) can produce H(2) at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm(2) with a cell voltage of only 0.60 V.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。