A Novel In Situ Sol-Gel Synthesis Method for PDMS Composites Reinforced with Silica Nanoparticles.

阅读:4
作者:Cordoba Aldo, Cauich-Rodríguez Juan Valerio, Vargas-Coronado Rossana Faride, Velázquez-Castillo Rodrigo, Esquivel Karen
The addition of nanostructures to polymeric materials allows for a direct interaction between polymeric chains and nanometric structures, resulting in a synergistic process through the physical (electrostatic forces) and chemical properties (bond formation) of constituents for the modification of their properties and potential cutting-edge materials. This study explores a novel in situ synthesis method for PDMS-%SiO(2) nanoparticle composites with varying crosslinking degrees (PDMS:TEOS of 15:1, 10:1, and 5:1); particle concentrations (5%, 10%, and 15%); and sol-gel catalysts (acidic and alkaline). This investigation delves into the distinct physical and chemical properties of silicon nanoparticles synthesized under acidic (SiO(2)-a) and alkaline (SiO(2)-b) conditions. A characterization through Raman, FT-IR, and XPS analyses confirms particle size and agglomeration differences between both the SiO(2)-a and SiO(2)-b particles. Similar chemical environments, with TEOS and ethanol by-products, were detected for both systems. The results on polymer composites elucidate the successful incorporation of SiO(2) nanoparticles into the PDMS matrix without altering the PDMS's chemical structure. However, the presence of nanoparticles did affect the relative intensities of specific vibrational modes over composites from -35% to 24% (Raman) and from -14% to 59% (FT-IR). The XPS results validate the presence of Si, O, and C in all composites, with significant variations in atomic proportions (C/Si and O/Si) and Si and C component analyses through deconvolution techniques. This study demonstrates the successful in situ synthesis of PDMS-SiO(2) composites with tunable properties by controlling the sol-gel and crosslinking synthesis parameters. The findings provide valuable insights into the in situ synthesis methods of polymeric composite materials and their potential integration with polymer nanocomposite processing techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。