This paper attempts to present a novel application of Binary Artificial Bat algorithm for more effective location management in cellular networks. The location management is a mobility management task, which involves tracking of the mobile stations to locate their exact positions so that an incoming call or data can be routed to the intended mobile user. The location management cost comprises of the costs incurred by two processes, namely location registration and location search. This work focuses on network cost optimization, using Binary Artificial Bat algorithm for reporting cell planning strategy, which has not been reported yet. Results of the proposed algorithm have been compared with that of Binary Particle Swarm Optimization (BPSO) and Binary Differential Evolution (BDE) for some reference and realistic networks. The proposed approach is found to perform as good as other state-of-art techniques reported in the literature in terms of accuracy in solution, but it shows perceptible improvement in convergence speed.
Reporting cell planning-based cellular mobility management using a Binary Artificial Bat algorithm.
阅读:7
作者:Swayamsiddha Swati, Prateek, Singh Sudhansu Sekhar, Parija Smita, Pratihar Dilip Kumar
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2019 | 起止号: | 2019 Mar 7; 5(3):e01276 |
| doi: | 10.1016/j.heliyon.2019.e01276 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
