To investigate the mechanical properties of fractured dolomite, this study analyzed the fracture characteristics (dip angle, length, position, quantity) using the Pearson coefficient and MIC coefficient. Subsequently, the data pertaining to fracture characteristics is preprocessed using a third-degree polynomial, and a three-classification strategy is implemented to improve the logistic regression algorithm to establish the strength prediction model of fractured dolomite. Furthermore, the significance order of the impact of fracture characteristics on rock strength was determined using the numerical simulation software PFC3D, and the dip angle effect was explained from the perspective of internal fracture propagation within the rock. The results show that: (1) When the regularization coefficient λâ=â10,000, the algorithm has the highest prediction accuracy and the strongest model generalization ability. (2) The numerical simulation analysis software PFC3D can accurately invert rock failure process and characteristics, and the order of influence of fracture characteristics on rock strength is dip angleâ>âlengthâ>âposition.
Strength prediction model of fractured dolomite and analysis of mechanical properties based on PFC3D.
阅读:3
作者:Chen Yi, Rao Junying, Zhao Changjie, Xue Yanghao, Liu Chang, Yin Quan
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Aug 17; 13(1):13368 |
| doi: | 10.1038/s41598-023-40254-x | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
