Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells.

阅读:4
作者:Jung Sokhee, Regan John M
The external resistance (R(ext)) of microbial fuel cells (MFCs) regulates both the anode availability as an electron acceptor and the electron flux through the circuit. We evaluated the effects of R(ext) on MFCs using acetate or glucose. The average current densities (I) ranged from 40.5 mA/m(2) (9,800 Ω) to 284.5 mA/m(2) (150 Ω) for acetate-fed MFCs (acetate-fed reactors [ARs]), with a corresponding anode potential (E(an)) range of -188 to -4 mV (versus a standard hydrogen electrode [SHE]). For glucose-fed MFCs (glucose-fed reactors [GRs]), I ranged from 40.0 mA/m(2) (9,800 Ω) to 273.0 mA/m(2) (150 Ω), with a corresponding E(an) range of -189 to -7 mV. ARs produced higher Coulombic efficiencies and energy efficiencies than GRs over all tested R(ext) levels because of electron and potential losses from glucose fermentation. Biogas production accounted for 14 to 18% of electron flux in GRs but only 0 to 6% of that in ARs. GRs produced similar levels of methane, regardless of the R(ext). However, total methane production in ARs increased as R(ext) increased, suggesting that E(an) might influence the competition for substrates between exoelectrogens and methanogens in ARs. An increase of R(ext) to 9,800 Ω significantly changed the anode bacterial communities for both ARs and GRs, while operating at 970 Ω and 150 Ω had little effect. Deltaproteobacteria and Bacteroidetes were the major groups found in anode communities in ARs and GRs. Betaproteobacteria and Gammaproteobacteria were found only in ARs. Bacilli were abundant only in GRs. The anode-methanogenic communities were dominated by Methanosaetaceae, with significantly lower numbers of Methanomicrobiales. These results show that R(ext) affects not only the E(an) and current generation but also the anode biofilm community and methanogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。