BACKGROUND: BRAT1 (BRCA1-associated ATM activator 1) interacts with both BRCA1, ATM and DNA-PKcs, and has been implicated in DNA damage responses. However, based on our previous results, it has been shown that BRAT1 may be involved in cell growth and apoptosis, besides DNA damage responses, implying that there are undiscovered functions for BRAT1. METHODS: Using RNA interference against human BRAT1, we generated stable BRAT1 knockdown cancer cell lines of U2OS, Hela, and MDA-MA-231. We tested cell growth properties and in vitro/in vivo tumorigenic potentials of BRAT1 knockdown cells compared to control cells. To test if loss of BRAT1 induces metabolic abnormalities, we examined the rate of glycolysis, ATP production, and PDH activity in both BRAT1 knockdown and control cells. The role of BRAT1 in growth signaling was determined by the activation of Akt/Erk, and SC79, Akt activator was used for validation. RESULTS: By taking advantage of BRAT1 knockdown cancer cell lines, we found that loss of BRAT1 expression significantly decreases cell proliferation and tumorigenecity both in vitro and in vivo. Cell migration was also remarkably lowered when BRAT1 was depleted. Interestingly, glucose uptake and production of mitochondrial ROS (reactive oxygen species) are highly increased in BRAT1 knockdown HeLa cells. Furthermore, both basal and induced activity of Akt and Erk kinases were suppressed in these cells, implicating abnormality in signaling cascades for cellular growth. Consequently, treatment of BRAT1 knockdown cells with Akt activator can improve their proliferation and reduces mitochondrial ROS concentration. CONCLUSIONS: These findings suggest novel roles of BRAT1 in cell proliferation and mitochondrial functions.
BRAT1 deficiency causes increased glucose metabolism and mitochondrial malfunction.
阅读:4
作者:So Eui Young, Ouchi Toru
| 期刊: | BMC Cancer | 影响因子: | 3.400 |
| 时间: | 2014 | 起止号: | 2014 Jul 29; 14:548 |
| doi: | 10.1186/1471-2407-14-548 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
