Investigation of factors affecting fresh herbage yield in pea (Pisum arvense L.) using data mining algorithms.

阅读:7
作者:Çatal Muhammed İkbal, Çelik Şenol, Bakoğlu Adil
This study was carried out to determine the factors affecting the wet grass yield of pea plants grown in Turkey. Wet grass yield was predicted using parameters such as genotype, crude protein, crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF) with some data mining algorithms. These techniques provided easily interpretable data trees and precise cutoff values. This led to a comparison of the predictive abilities of data mining methods, including multivariate adaptive regression spline (MARS), Chi-square automatic interaction detection (CHAID), classification and regression tree (CART), and artificial neural network (ANN). To test the compatibility of the data mining algorithms, seven goodness-of-fit criteria were used. The predictive abilities of the fitted models were assessed using model fit statistics such as the coefficient of determination (R (2)), adjusted R (2), root mean square error (RMSE), mean absolute percentage error (MAPE), standard deviation ratio (SD ratio), Akaike information criterion (AIC), and corrected Akaike information criterion (AICc). With the greatest R (2) and adjusted R (2) values (0.998 and 0.986) and the lowest values of RMSE, MAPE, SD ratio, AIC, and AICc (10.499, 0.7365, 0.047, 268, and 688, respectively), the MARS method was determined to be the best model for quantifying plant fresh herbage yield. In estimating the fresh herbage production of the pea plant, the results showed that the MARS method was the most appropriate model and a good substitute for other data mining techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。