Contactless Fatigue Level Diagnosis System Through Multimodal Sensor Data.

阅读:7
作者:Lee Younggun, Lee Yongkyun, Kim Sungho, Kim Sitae, Yoo Seunghoon
Fatigue management is critical for high-risk professions such as pilots, firefighters, and healthcare workers, where physical and mental exhaustion can lead to catastrophic accidents and loss of life. Traditional fatigue assessment methods, including surveys and physiological measurements, are limited in real-time monitoring and user convenience. To address these issues, this study introduces a novel contactless fatigue level diagnosis system leveraging multimodal sensor data, including video, thermal imaging, and audio. The system integrates non-contact biometric data collection with an AI-driven classification model capable of diagnosing fatigue levels on a 1 to 5 scale with an average accuracy of 89%. Key features include real-time feedback, adaptive retraining for personalized accuracy improvement, and compatibility with high-stress environments. Experimental results demonstrate that retraining with user feedback enhances classification accuracy by 11 percentage points. The system's hardware is validated for robustness under diverse operational conditions, including temperature and electromagnetic compliance. This innovation provides a practical solution for improving operational safety and performance in critical sectors by enabling precise, non-invasive, and efficient fatigue monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。