CXR-Seg: A Novel Deep Learning Network for Lung Segmentation from Chest X-Ray Images.

阅读:21
作者:Din Sadia, Shoaib Muhammad, Serpedin Erchin
Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。