Atmospheric Plasma Treatment to Improve PHB Coatings on 316L Stainless Steel.

阅读:3
作者:Radilla J, Martínez H, Vázquez O, Campillo B
In the present study, biopolymeric coatings of polyhydroxybutyrate (PHB) were deposited on 316L stainless steel substrates. The PHB coatings were developed using the spin coating method. To improve the adhesion of the PHB coating on the substrate, this method uses an atmospheric plasma treatment. Adhesion tests show a 156% increase in adhesion after 5 s of surface treatment. Raman spectroscopy analysis of the polymer shows the incorporation of functional groups and the formation of new hydrogen bonds, which can help us bind drugs and promote osteogenesis after plasma treatment. Additionally, the electrochemical behaviors in artificial body fluids (Hanks' solution) of the PHB coatings on the steel were evaluated with potentiodynamic tests, which revealed a decrease in the corrosion current and resistance to the transfer of the charge from the electrolyte to the 316L steel because of the PHB coating. All the PHB coatings were characterized using scanning electron microscopy and Raman spectroscopy after the electrochemical tests. This analysis confirmed the diffusion of electrolyte species toward the surface and the degradation of the polymer chain for the first 15 s of treatment with atmospheric plasma. These findings support the claim that plasma surface modification is a quick, environmentally friendly, and cost-effective method to enhance the performance of PHB coatings on 316L stainless steel for medical devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。