An environmentally friendly and highly sensitive analytical method for the determination of the dye Eosin Y (EY) was developed utilizing vortex-assisted liquid-liquid microextraction based on deep eutectic solvents (DESs), combined with fluorescence detection (LPME-FLD). The extraction efficiencies of conventional solvents and various DES systems, composed of tetrabutylammonium bromide (TBAB) and alcohols (hexanol, octanol, and decanol) in different ratios, were systematically compared. DFT calculations provided insights into the most stable forms of EY in solvents of varying polarity. Theoretical Hansen solubility parameters and the COSMO-RS solvation model were applied to assess extraction efficiency. Hansen parameters were obtained via semiempirical PM7 calculations, while BP86/def2-TZVPD DFT computations were employed within the openCOSMO-RS framework. The developed method exhibited a linear calibration range between 0.1 and 130 µg·L(-1), with a high correlation coefficient (R(2) = 0.9982). The limit of detection (LOD) was established at 0.028 µg·L(-1). Method precision and repeatability were confirmed over two days, with relative standard deviations (RSDs) ranging from 1.1% to 2.7% and with recoveries between 99.0% and 106.2%. The proposed analytical approach was successfully applied to the determination of EY in real water samples, demonstrating both its practical applicability and alignment with green chemistry principles.
Fluorimetric Determination of Eosin Y in Water Samples and Drinks Using Deep Eutectic Solvent-Based Liquid-Phase Microextraction.
阅读:3
作者:KakalejÄÃková Sofia, Bazeľ Yaroslav, Drábiková Mária, Fizer Maksym
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 10; 30(16):3334 |
| doi: | 10.3390/molecules30163334 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
