We propose that postal Change-of-Address (CoA) data can be used to monitor/predict likely second wave caseloads in viral infections around urban epicentres. To illustrate the idea, we focus on the tri-state area consisting of New York City (NYC) and surrounding counties in New York, New Jersey and Connecticut States. NYC was an early epicentre of the coronavirus disease 2019 (Covid-19) pandemic, with a first peak in daily cases in early April 2020, followed by the second peak in May/June 2020. Using CoA data from the US Postal Service (USPS), we show that, despite a quarantine mandate, there was a large net movement of households from NYC to surrounding counties in the period April-June 2020. This net outward migration of households was strongly correlated with both the timing and the number of cases in the second peaks in Covid-19 cases in the surrounding counties. The timing of the second peak was also correlated with the distance of the county from NYC, suggesting that this was a directed flow and not random diffusion. Our analysis shows that CoA data is a useful method in tracking the spread of an infectious pandemic agent from urban epicentres.
Using postal change-of-address data to predict second waves in infections near pandemic epicentres.
阅读:3
作者:Schulman Adam, Bhanot Gyan
| 期刊: | Epidemiology and Infection | 影响因子: | 2.200 |
| 时间: | 2022 | 起止号: | 2022 Mar 24; 150:e120 |
| doi: | 10.1017/S0950268822000486 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
