Assessing Tetrahedral Lattice Parameters for Engineering Applications Through Finite Element Analysis.

阅读:3
作者:Agwu Uchechukwu O, Wang Kangchun, Singh Chaitanya, Leemhuis Connor, Yamakawa Soji, Shimada Kenji
Minimizing weight while maintaining strength in components is a continuous struggle within manufacturing industries, especially in aerospace. This study explores how controlling the dimensions of the geometric parameters of a lattice yields ideal mechanical properties for aerospace-related applications. A previously developed Bubble-mesh based computational method was used to generate a novel type of tetrahedral lattice that allows for the manipulation of three geometric parameters: cell size/density, strut diameter, and strut intersection rounding. Topology optimization and lattice generation within components are typical methods used to decrease weight while maintaining strength. Although these are robust optimization methods, each have their faults. Highly topology-optimized components may fail under unexpected loads, and lattice generation within commercial software is often limited in its ability to create ideal lattices with controlled geometric parameters, resulting in lattices with repeating unit cells. In this study, we used finite element methods (FEM)-based compression tests on latticed cubes with various parameter combinations to determine the best balance of lattice parameters. The results showed that strut diameter and strut intersection rounding were the best parameters to control to maintain strength and reduce weight. This understanding of the lattice structures was then applied to two aerospace components: a jet engine bracket and an airplane bearing bracket. By applying tetrahedral lattices with specified strut diameters and strut intersection rounding, the weight of the jet engine bracket was reduced by 51.8%, and the airplane bearing bracket was reduced by 20.5%.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。