Assessing Tetrahedral Lattice Parameters for Engineering Applications Through Finite Element Analysis.

阅读:7
作者:Agwu Uchechukwu O, Wang Kangchun, Singh Chaitanya, Leemhuis Connor, Yamakawa Soji, Shimada Kenji
Minimizing weight while maintaining strength in components is a continuous struggle within manufacturing industries, especially in aerospace. This study explores how controlling the dimensions of the geometric parameters of a lattice yields ideal mechanical properties for aerospace-related applications. A previously developed Bubble-mesh based computational method was used to generate a novel type of tetrahedral lattice that allows for the manipulation of three geometric parameters: cell size/density, strut diameter, and strut intersection rounding. Topology optimization and lattice generation within components are typical methods used to decrease weight while maintaining strength. Although these are robust optimization methods, each have their faults. Highly topology-optimized components may fail under unexpected loads, and lattice generation within commercial software is often limited in its ability to create ideal lattices with controlled geometric parameters, resulting in lattices with repeating unit cells. In this study, we used finite element methods (FEM)-based compression tests on latticed cubes with various parameter combinations to determine the best balance of lattice parameters. The results showed that strut diameter and strut intersection rounding were the best parameters to control to maintain strength and reduce weight. This understanding of the lattice structures was then applied to two aerospace components: a jet engine bracket and an airplane bearing bracket. By applying tetrahedral lattices with specified strut diameters and strut intersection rounding, the weight of the jet engine bracket was reduced by 51.8%, and the airplane bearing bracket was reduced by 20.5%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。