Real-time monitoring of water reuse systems ensures the production of high quality water to protect human health at the point-of-use. In this study, several online real-time sensors were utilized to monitor effluent from a wastewater fed laboratory-scale membrane bioreactor (MBR) under natural and simulated failure conditions. These simulated failures included adding reactor mixed liquor to emulate a membrane breach, and spiking MS2 bacteriophage into the reactor to create a high viral load, which might be observed during an outbreak. The CANARY event detection software was used to analyze sensor data and report changes in water quality that might be indicative of poor system behavior. During simulated failure conditions, CANARY reported 20 alarms, accurately detecting each failure. During natural operating conditions, 219 alarms were produced and 189 were attributed to known events (e.g., system and sensor maintenance). The remaining alarms (23) during natural operating conditions were considered to have an unknown cause. However, 13 of those had signal deviations similar to known events, but could not be definitively linked to a source. The results of this study suggest that real-time monitoring in conjunction with CANARY analysis may be useful as an early warning system for monitoring the effluent of water reuse systems, and may help to quickly identify treatment malfunctions or other abnormal conditions.
Application of the CANARY event detection software for real-time performance monitoring of decentralized water reuse systems.
阅读:4
作者:Leow Aaron, Burkhardt Jonathan, Platten William E 3rd, Zimmerman Brian, Brinkman Nichole E, Turner Anne, Murray Regan, Sorial George, Garland Jay
| 期刊: | Environmental Science-Water Research & Technology | 影响因子: | 3.100 |
| 时间: | 2017 | 起止号: | 2017;3(2):224-234 |
| doi: | 10.1039/C6EW00226A | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
