Dexrazoxane significantly impairs the induction of doxorubicin resistance in the human leukaemia line, K562.

阅读:6
作者:Sargent J M, Williamson C J, Yardley C, Taylor C G, Hellmann K
Dexrazoxane combined with doxorubicin (+ 5-fluorouracil + cyclophosphamide - the FAC regime) leads to a significant decrease in doxorubicin cardiotoxicity and a significant increase in median survival time for patients with advanced breast cancer responsive to FAC. The reason for this increase in survival may be due to interference with the mechanism involved in the emergence of multidrug resistance (MDR). In order to test this hypothesis, we induced resistance to doxorubicin in the K562 cell line by growing cells in increasing concentrations of doxorubicin (10-30 nM) in the presence and absence of dexrazoxane (20 nM). The doxorubicin sensitivity of all resultant sublines was measured using the MTT assay. Flow cytometry was used to assess the MDR1 phenotype, measuring P-glycoprotein expression with MRK 16 antibody and drug accumulation in the presence and absence of PSC 833 for functional P-glycoprotein. Long-term growth in doxorubicin increased the cellular resistance (IC(50)) of K562 cells in a concentration-dependent manner (r(2 )= 0.908). Doxorubicin resistance was not induced in the presence of dexrazoxane (P< 0.0001) for several months. In parallel, the expression of functional P-glycoprotein was delayed after concomitant addition of dexrazoxane to the selecting medium (P< 0.001). Dexrazoxane did not act as a conventional modulator of P-glycoprotein. These results suggest that dexrazoxane may delay the development of MDR1, thus allowing responders to the FAC regime to continue to respond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。