Polylactic acid (PLA) based scaffolds have attained considerable attention in recent years for being used as biodegradable implants in bone tissue engineering (BTE), owing to their suitable biocompatibility and processability. Nevertheless, the mechanical properties, bioactivity and biodegradation rate of PLA need to be improved for practical application. In this investigation, PLA-xMn composite filaments (xâ=â0, 1, 3, 5 and 7 wt%) were fabricated, characterized, and used for 3D printing of scaffolds by the fused deposition modeling process. The effect of Mn addition on the thermal, physical, mechanical, and structural properties, as well as the degradability and cell viability of 3D printed scaffolds were investigated in details. The obtained results indicate that the PLA-Mn composite filaments exhibit higher chain mobility and melt flow index values, with lower cold crystallization temperature and a higher degree of crystallinity. This higher flowability led to lower dimensional accuracy of 3D printed scaffolds, but resulted in higher interlayer adhesion. It was found that the mechanical properties of composite scaffolds were remarkably enhanced with the addition of Mn particles. The incorporation of Mn particles also caused higher surface roughness and hydrophilicity, a superior biodegradation rate of the scaffolds as well as better biocompatibility, indicating a promising candidate for (BTE) applications.
Fabrication, characterization and evaluating properties of 3D printed PLA-Mn scaffolds.
阅读:4
作者:Dehghan-Toranposhti Sina, Bakhshi Rasoul, Alizadeh Reza, Bohlouli Mahboubeh
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jul 18; 14(1):16592 |
| doi: | 10.1038/s41598-024-67478-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
