Natural biopolymers have gained remarkable attention for bioremediation particularly in heavy metal removal and oil degradation due to their non-toxic nature and lack of secondary pollution. The exopolysaccharides (EPS) produced by the bacteria have become an important class of biopolymers that are employed in bioremediation. The bacteria isolated from the rhizospheric soil have higher metal tolerance and their EPS are effective in biosorption of heavy metals. Here, we report the characterization of an EPS (EPS-RN5) isolated from the root nodule-associated bacteria, Enterobacter cancerogenus strain YU16-RN5 and its heavy metal biosorption abilities. The bacteria isolated from the West coast of India was cultured in yeast extract mannitol (YEM) medium for EPS extraction and to study the production kinetics on a temporal scale. The biochemical composition, rheological properties and thermostability of EPS-RN5 was characterized by standard methods. The biosorption potential of EPS-RN5 against the selected heavy metals was analyzed by employing the inductively coupled plasma atomic emission spectroscopy (ICP-AES) technique. Further, cell culture experiments were used to test the role of EPS-RN5 in reducing the cytotoxicity exerted by the heavy metals in vitro using a human embryonic kidney cell line (HEK 293T). The bacteria showed good growth in YEM media and the maximum EPS yield was 1800 mg/L at 96 h. The molecular weight of EPS-RN5 was 0.7âÃâ10(6) Da and it contained 61.5% total sugars and 14.5% proteins. The monosaccharide composition of the EPS included glucose, sorbose and galactose in the ratio 0.25:0.07:1.0. The EPS-RN5 showed high thermal stability with a degradation temperature of 273 °C. Rheological analysis revealed the non-Newtonian behavior, with pseudoplastic characteristics. The EPS-RN5 efficiently absorbed cadmium and other heavy metals such as mercury, strontium, copper, arsenic, and uranium. In vitro studies revealed significant protective effect against the cadmium-induced cytotoxicity in HEK 293T cells. These results indicate the potential applications of EPS-RN5.
Characterization of an exopolysaccharide produced by Enterobacter sp. YU16-RN5 and its potential to alleviate cadmium induced cytotoxicity in vitro.
阅读:10
作者:Dhanya Bythadka Erappa, Athmika, Rekha Punchappady Devasya
| 期刊: | 3 Biotech | 影响因子: | 2.900 |
| 时间: | 2021 | 起止号: | 2021 Dec;11(12):491 |
| doi: | 10.1007/s13205-021-03034-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
