Aloe perryi (ALP) is an herb that has several biological activities such as antioxidant, antibacterial, and antitumor effects and is frequently used to treat a wide range of illnesses. The activity of many compounds is augmented by loading them in nanocarriers. In this study, ALP-loaded nanosystems were developed to improve their biological activity. Among different nanocarriers, solid lipid nanoparticles (ALP-SLNs), chitosan nanoparticles (ALP-CSNPs), and CS-coated SLNs (C-ALP-SLNs) were explored. The particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, and release profile were evaluated. Scanning electron microscopy was used to see the nanoparticles' morphology. Moreover, the possible biological properties of ALP were assessed and evaluated. ALP extract contained 187 mg GAE/g extract and 33 mg QE/g extract in terms of total phenolic and flavonoid content, respectively. The ALP-SLNs-F1 and ALP-SLNs-F2 showed particle sizes of 168.7 ± 3.1 and 138.4 ± 9.5 nm and the zeta potential values of -12.4 ± 0.6, and -15.8 ± 2.4 mV, respectively. However, C-ALP-SLNs-F1 and C-ALP-SLNs-F2 had particle sizes of 185.3 ± 5.5 and 173.6 ± 11.3 nm with zeta potential values of 11.3 ± 1.4 and 13.6 ± 1.1 mV, respectively. The particle size and zeta potential of ALP-CSNPs were 214.8 ± 6.6 nm and 27.8 ± 3.4 mV, respectively. All nanoparticles exhibited PDI < 0.3, indicating homogenous dispersions. The obtained formulations had EE% and DL% in the ranges of 65-82% and 2.8-5.2%, respectively. After 48 h, the in vitro ALP release rates from ALP-SLNs-F1, ALP-SLNs-F2, C-ALP-SLNs-F1, C-ALP-SLNs-F2, and ALP-CSNPs were 86%, 91%, 78%, 84%, and 74%, respectively. They were relatively stable with a minor particle size increase after one month of storage. C-ALP-SLNs-F2 exhibited the greatest antioxidant activity against DPPH radicals at 73.27%. C-ALP-SLNs-F2 demonstrated higher antibacterial activity based on MIC values of 25, 50, and 50 µg/mL for P. aeruginosa, S. aureus, and E. coli, respectively. In addition, C-ALP-SLNs-F2 showed potential anticancer activity against A549, LoVo, and MCF-7 cell lines with IC50 values of 11.42 ± 1.16, 16.97 ± 1.93, and 8.25 ± 0.44, respectively. The results indicate that C-ALP-SLNs-F2 may be promising nanocarriers for enhancing ALP-based medicines.
Chitosan-Coated Solid Lipid Nanoparticles as an Efficient Avenue for Boosted Biological Activities of Aloe perryi: Antioxidant, Antibacterial, and Anticancer Potential.
阅读:7
作者:Aldayel Tahany Saleh, M Badran Mohamed, H Alomrani Abdullah, AlFaris Nora A, Z Altamimi Jozaa, S Alqahtani Ali, A Nasr Fahd, Ghaffar Safina, Orfali Raha
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2023 | 起止号: | 2023 Apr 19; 28(8):3569 |
| doi: | 10.3390/molecules28083569 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
