αO-conotoxin GeXIVA[1,2] was isolated in our laboratory from Conus generalis, a snail native to the South China Sea, and is a novel, nonaddictive, intramuscularly administered analgesic targeting the α9α10 nicotinic acetylcholine receptor (nAChR) with an IC(50) of 4.61 nM. However, its pharmacokinetics and related mechanisms underlying the analgesic effect remain unknown. Herein, pharmacokinetics and multiscale pharmacokinetic modelling in animals were subjected systematically to mechanistic assessment for αO-conotoxin GeXIVA[1,2]. The intramuscular bioavailability in rats and dogs was 11.47% and 13.37%, respectively. The plasma exposure of GeXIVA[1,2] increased proportionally with the experimental dose. The plasma protein binding of GeXIVA[1,2] differed between the tested animal species. The one-compartment model with the first-order absorption population pharmacokinetics model predicted doses for humans with bodyweight as the covariant. The pharmacokinetics-pharmacodynamics relationships were characterized using an inhibitory loss indirect response model with an effect compartment. Model simulations have provided potential mechanistic insights into the analgesic effects of GeXIVA[1,2] by inhibiting certain endogenous substances, which may be a key biomarker. This report is the first concerning the pharmacokinetics of GeXIVA[1,2] and its potential analgesic mechanisms based on a top-down modelling approach.
Novel αO-conotoxin GeXIVA[1,2] Nonaddictive Analgesic with Pharmacokinetic Modelling-Based Mechanistic Assessment.
阅读:4
作者:Zhu Xiaoyu, Yuan Mei, Wang Huanbai, Zhangsun Dongting, Yu Gang, Che Jinjing, Luo Sulan
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2022 | 起止号: | 2022 Aug 26; 14(9):1789 |
| doi: | 10.3390/pharmaceutics14091789 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
