Microbial Community-Level Physiological Profiles and Genetic Prokaryotic Structure of Burned Soils Under Mediterranean Sclerophyll Forests in Central Chile.

阅读:4
作者:Aponte Humberto, Galindo-Castañeda Tania, Yáñez Carolina, Hartmann Martin, Rojas Claudia
Forest fires alter soil microbial communities that are essential to support ecosystem recovery following land burning. These alterations have different responses according to soil abiotic pre- and post-fire conditions and fire severity, among others, and tend to decrease along vegetation recovery over time. Thus, understanding the effects of fires on microbial soil communities is critical to evaluate ecosystem resilience and restoration strategies in fire-prone ecosystems. We studied the state of community-level physiological profiles (CLPPs) and the prokaryotic community structure of rhizosphere and bulk soils from two fire-affected sclerophyll forests (one surveyed 17 months and the other 33 months after fire occurrence) in the Mediterranean climate zone of central Chile. Increases in catabolic activity (by average well color development of CLPPs), especially in the rhizosphere as compared with the bulk soil, were observed in the most recently affected site only. Legacy of land burning was still clearly shaping soil prokaryote community structure, as shown by quantitative PCR (qPCR) and Illumina MiSeq sequencing of the V4 region of the 16S rRNA gene, particularly in the most recent fire-affected site. The qPCR copy numbers and alpha diversity indexes (Shannon and Pielou's evenness) of sequencing data decreased in burned soils at both locations. Beta diversity analyses showed dissimilarity of prokaryote communities at both study sites according to fire occurrence, and NO(3) (-) was the common variable explaining community changes for both of them. Acidobacteria and Rokubacteria phyla significantly decreased in burned soils at both locations, while Firmicutes and Actinobacteria increased. These findings provide a better understanding of the resilience of soil prokaryote communities and their physiological conditions in Mediterranean forests of central Chile following different time periods after fire, conditions that likely influence the ecological processes taking place during recovery of fire-affected ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。