OBJECTIVES: To forecast the development trend of current outbreak in Dalian, mainly to predict turning points of COVID-19 outbreak in Dalian, Liaoning province, China, the results can be used to provide a scientific reference for timely adjustment of prevention and control strategies. METHODS: During the outbreak, Bayesian framework was used to calculated the time-dependent reproduction number ([Formula: see text]), and then above acquired [Formula: see text] and exponential trend equation were used to establish the prediction model, through the model, predict the [Formula: see text] value of following data and know when [Formula: see text] smaller than 1. RESULTS: From July 22 to August 5, 2020, and from March 14 to April 2, 2022, 92 and 632 confirmed cases and asymptomatic infected cases of COVID-19 were reported (324 males and 400 females) in Dalian. The R square for exponential trend equation were 0.982 and 0.980, respectively which fit the [Formula: see text] with illness onset between July 19 to July 28, 2020 and between March 5 to March 17, 2022. According to the result of prediction, under the current strength of prevention and control, the [Formula: see text] of COVID-19 will drop below 1 till August 2, 2020 and March 26, 2022, respectively in Dalian, one day earlier or later than the actual date. That is, the turning point of the COVID-19 outbreak in Dalian, Liaoning province, China will occur on August 2, 2020 and March 26, 2022. CONCLUSIONS: Using time-dependent reproduction number values to predict turning points of COVID-19 outbreak in Dalian, Liaoning province, China was effective and reliable on the whole, and the results can be used to establish a sensitive early warning mechanism to guide the timely adjustment of COVID-19 prevention and control strategies.
Using time-dependent reproduction number to predict turning points of COVID-19 outbreak in Dalian, Liaoning province, China.
阅读:3
作者:An Qingyu, Wu Jun, Bai Jin Jian, Li Xiaofeng
| 期刊: | BMC Infectious Diseases | 影响因子: | 3.000 |
| 时间: | 2022 | 起止号: | 2022 Dec 10; 22(1):926 |
| doi: | 10.1186/s12879-022-07911-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
