Amyloid β (Aβ) accumulation in the brain is considered to be one of the major pathological changes in the progression of Alzheimer's disease (AD). Neprilysin (NEP) is a zinc metallopeptidase that efficiently degrades Aβ. However, conventional approaches for increasing NEP levels or inducing its activation via viral-vector gene delivery have been shown to be problematic due to complications involving secondary toxicity, immune responses, and/or low gene transfer efficiency. Thus, in the present study, a physical and tractable NEP gene-delivery system via ultrasound (US) combined with microbubbles was developed for AD therapy. We introduced the plasmid, human NEP (hNEP), into skeletal muscle of 6-month-old amyloid precursor protein/presenilin-1 (APP/PS1) AD mice. Interestingly, we found a significantly reduced Aβ burden in the brain at 1 month after the delivery of overexpressed hNEP into skeletal muscle. Moreover, hNEP-treated AD mice exhibited improved performance in the Morris water maze compared to that of untreated AD mice. In addition, there were no apparent injuries in the injected muscle or in the lungs or kidneys at 1 month after the delivery of hNEP into skeletal muscle. These findings suggest that the introduction of hNEP into skeletal muscle via US represents an effective and safe therapeutic strategy for ameliorating AD-like symptoms in APP/PS1 mice, which may have the potential for clinical applications in the future.
Expression of Neprilysin in Skeletal Muscle by Ultrasound-Mediated Gene Transfer (Sonoporation) Reduces Amyloid Burden for AD.
阅读:4
作者:Li Yuanli, Wang Yadi, Wang Jue, Chong Ka Yee, Xu Jingjing, Liu Zhaohui, Shan Chunlei
| 期刊: | Molecular Therapy-Methods & Clinical Development | 影响因子: | 4.700 |
| 时间: | 2020 | 起止号: | 2020 Jan 10; 17:300-308 |
| doi: | 10.1016/j.omtm.2019.12.012 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
