Calcium mineralization in biological and geological systems is often regulated by (macro)molecules enriched with anionic functional moieties. Relatively few studies have examined the effects of phosphate-based modifiers that are integral in calcification underlying human bone formation and pathological diseases. Here we mimic posttranslational phosphorylated moieties of a biologically-active inhibitor protein and demonstrate that polyphosphates and phosphonates suppress calcium oxalate nucleation, tailor solvate crystal structure, and irreversibly inhibit crystal growth in ways that significantly deviate from commonly investigated carboxylate-rich modulators of biomineralization. The most potent modifiers exhibit an uncommon dual mode of action, wherein nucleation is suppressed by altering prenucleation clusters and crystal surface growth is impeded irreversibly by inducing lattice strain. Once crystal surfaces are exposed to modifiers, recrystallization is severely restricted. This exemplifies the uniqueness and efficiency of phosphates wherein their multiple modes of action are promising characteristics for designing de novo biologically-inspired molecules as mineralization regulators.
Bio-inspired multifunctional disruptors of calcium oxalate crystallization.
阅读:3
作者:Kim Doyoung, Chauhan Vraj P, Alamani Bryan G, Fisher Saxton D, Yang Zhi, Jones Matthew R, Terlier Tanguy, Vekilov Peter G, Rimer Jeffrey D
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 5; 16(1):5229 |
| doi: | 10.1038/s41467-025-60320-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
