Robustness of electrocardiogram signal quality indices.

阅读:3
作者:Rahman Saifur, Karmakar Chandan, Natgunanathan Iynkaran, Yearwood John, Palaniswami Marimuthu
Electrocardiogram (ECG) signal quality indices (SQIs) are essential for improving diagnostic accuracy and reliability of ECG analysis systems. In various practical applications, the ECG signals are corrupted by different types of noise. These corrupted ECG signals often provide insufficient and incorrect information regarding a patient's health. To solve this problem, signal quality measurements should be made before an ECG signal is used for decision-making. This paper investigates the robustness of existing popular statistical signal quality indices (SSQIs): relative power of QRS complex (SQI(p)), skewness (SQI(skew)), signal-to-noise ratio (SQI(snr)), higher order statistics SQI (SQI(hos)) and peakedness of kurtosis (SQI(kur)). We analysed the robustness of these SSQIs against different window sizes across diverse datasets. Results showed that the performance of SSQIs considerably fluctuates against varying datasets, whereas the impact of varying window sizes was minimal. This fluctuation occurred due to the use of a static threshold value for classifying noise-free ECG signals from the raw ECG signals. Another drawback of these SSQIs is the bias towards noise-free ECG signals, that limits their usefulness in clinical settings. In summary, the fixed threshold-based SSQIs cannot be used as a robust noise detection system. In order to solve this fixed threshold problem, other techniques can be developed using adaptive thresholds and machine-learning mechanisms.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。