Lobule-specific membrane excitability of cerebellar Purkinje cells.

阅读:3
作者:Kim Chang-Hee, Oh Seung-Ha, Lee Jun Ho, Chang Sun O, Kim Jun, Kim Sang Jeong
  Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning-related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input-output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I-X), and each lobule receives different sensory information. However, lobule-specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III-V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III-V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A-type K(+) current and early inactivation of fast Na(+) conductance with activation of 4-aminopyridine-sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule-specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。