As a consequence of ongoing climate change, heatwaves are predicted to increase in frequency, intensity, and duration in many regions. Such extreme events can shift organisms from thermal optima for physiology and behaviour, with the thermal stress hypothesis predicting reduced performance at temperatures where the maintenance of biological functions is energetically costly. Performance includes the ability to resist biotic stressors, including infectious diseases, with increased exposure to extreme temperatures having the potential to synergise with parasite infection. Climate change is a proposed threat to native bee pollinators, directly and through indirect effects on floral resources, but the thermal stress hypothesis, particularly pertaining to infectious disease resistance, has received limited attention. We exposed adult Bombus impatiens bumblebee workers to simulated, ecologically relevant heatwave or control thermal regimes and assessed longevity, immunity, and resistance to concurrent or future parasite infections. We demonstrate that survival and induced antibacterial immunity are reduced following heatwaves. Supporting that heatwave exposure compromised immunity, the cost of immune activation was thermal regime dependent, with survival costs in control but not heatwave exposed bees. However, in the face of real infections, an inability to mount an optimal immune response will be detrimental, which was reflected by increased trypanosomatid parasite infections following heatwave exposure. These results demonstrate interactions between heatwave exposure and bumblebee performance, including immune and infection outcomes. Thus, the health of bumblebee pollinator populations may be affected through altered interactions with parasites and pathogens, in addition to other effects of extreme manifestations of climate change.
A simulated natural heatwave perturbs bumblebee immunity and resistance to infection.
阅读:7
作者:Tobin Kerrigan B, Mandes Rachel, Martinez Abraham, Sadd Ben M
| 期刊: | Journal of Animal Ecology | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024 Feb;93(2):171-182 |
| doi: | 10.1111/1365-2656.14041 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
