Global translational reprogramming is a fundamental layer of immune regulation in plants

整体翻译重编程是植物免疫调节的基本层

阅读:4
作者:Guoyong Xu, George H Greene, Heejin Yoo, Lijing Liu, Jorge Marqués, Jonathan Motley, Xinnian Dong

Abstract

In the absence of specialized immune cells, the need for plants to reprogram transcription to transition from growth-related activities to defence is well understood. However, little is known about translational changes that occur during immune induction. Using ribosome footprinting, here we perform global translatome profiling on Arabidopsis exposed to the microbe-associated molecular pattern elf18. We find that during this pattern-triggered immunity, translation is tightly regulated and poorly correlated with transcription. Identification of genes with altered translational efficiency leads to the discovery of novel regulators of this immune response. Further investigation of these genes shows that messenger RNA sequence features are major determinants of the observed translational efficiency changes. In the 5' leader sequences of transcripts with increased translational efficiency, we find a highly enriched messenger RNA consensus sequence, R-motif, consisting of mostly purines. We show that R-motif regulates translation in response to pattern-triggered immunity induction through interaction with poly(A)-binding proteins. Therefore, this study provides not only strong evidence, but also a molecular mechanism, for global translational reprogramming during pattern-triggered immunity in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。