Anti-Inflammatory Effects of Weissella cibaria SDS2.1 Against Klebsiella pneumoniae-Induced Mammary Gland Inflammation.

阅读:6
作者:Ren Meiyi, Jin Tianxiong, Tong Jingdi, Song Deyuan, Xie Qinna, Li Xiaohan, Li Yan, Liu Kangping, Gao Jian, Liu Mingchao, Cheng Jia
Dairy cows are highly susceptible to mastitis caused by Klebsiella pneumoniae, and treating these infections poses a challenge due to the resistance of the bacterium to common antibiotics. This study aimed to evaluate the safety of W. cibaria SDS2.1 and investigate its protective effects against K. pneumoniae-induced mastitis. The safety of W. cibaria SDS2.1 was assessed through comprehensive analyses, including antibiotic resistance profiling, hemolysis assays, cell cytotoxicity tests, and whole-genome sequencing. Furthermore, its ability to protect against cellular and tissue damage caused by K. pneumoniae-induced mastitis was evaluated using both in vitro and in vivo models. Our results revealed that W. cibaria SDS2.1 was non-hemolytic, non-cytotoxic, and significantly inhibited the growth of K. pneumoniae (p < 0.05). Additionally, W. cibaria SDS2.1 effectively reduced the adhesion and invasion of K. pneumoniae. In the K. pneumoniae-induced mouse mastitis model, W. cibaria SDS2.1 significantly reduced myeloperoxidase (MPO) activity, mammary tissue damage, and the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) (p < 0.05). In K. pneumoniae-infected bovine mammary epithelial cells (bMECs), W. cibaria SDS2.1 significantly decreased lactate dehydrogenase (LDH) release, indicating reduced cellular damage. These findings demonstrate that W. cibaria SDS2.1 exhibits anti-inflammatory properties in experimental models, suggesting its potential role in mitigating K. pneumoniae-induced mastitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。