Partial discharge (PD) could lead to the formation of small arcs or sparks within the insulating material, which can cause damage and degradation to the insulator over time. In ceramic insulators, there are several factors that can cause PD including manufacturing defects, aging, and exposure to environmental conditions such as moisture and temperature extremes. As a result, detecting and monitoring PD in ceramic insulators is important for ensuring the reliability and safety of electrical systems that rely on these insulators. In this study, acoustic emission technique is introduced for PD detection and condition monitoring of defective ceramic insulators. A sequence of data processing techniques is performed on the captured signals to extract and select the most significant signatures for classification of defects in insulator strings. Artificial neural network (ANN) has been used to build an intelligent classifier for easily and accurately classification of defective insulators. The overall recognition rate of the classifier was obtained at 96.03% from discrete wavelet transform analysis and 88.65% from fast Fourier transform analysis. This obtained result indicates high accuracy and performance classification. The outcomes of ANN were verified by SVM and KNN algorithms.
Artificial neural network analysis for classification of defected high voltage ceramic insulators.
阅读:7
作者:Haiba Ahmed S, Eliwa Gad A
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jan 17; 14(1):1513 |
| doi: | 10.1038/s41598-024-51860-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
