Mechanisms of Growth and Hydrogen Permeation of Zirconium Nitride Film on Zirconium Hydride.

阅读:5
作者:Wang Wenke, Yan Guoqing, Ma Zhaohui, Zhang Jiandong, Wang Lijun, Guo Zhancheng
Nitride film as a hydrogen permeation barrier on zirconium hydride has seldom been studied. In this work, the zirconium nitride films were prepared on zirconium hydride in an atmosphere of N(2) and N(2) + H(2) at 500~800 °C, with a holding time of 5 h and 20 h, and the mechanisms of film growth and hydrogen permeation were analyzed. The results showed that the film growth was mostly influenced by the temperature, followed by the reaction atmosphere and the holding time. The hydrogen could increase the nitrogen diffusivity during the formation of zirconium nitride films. The in situ nitriding conditions were optimized as 800 °C, N(2) + H(2) atmosphere, and 5~20 h. The chemical composition of ZrN-based films was mainly comprised of Zr and N, with a minor content of O. In addition, the film exhibited a major phase of ZrN, accompanied by the coexistence of ZrO(2), ZrO, ZrN(NH(2)), and ZrN(0.36)H(0.8), as well as O-H and N-H bonds based on the XPS analysis. The as-prepared ZrN base films in the present study exhibited superior hydrogen permeation resistance to other ZrO(2) films previously reported. The hydrogen permeation resistance of the films could be attributed to the following mechanisms, including the chemical capture of hydrogen by the above-mentioned compounds and bonds; the physical barrier of continuous and dense film incurred from the volume effect of different compounds based on Pilling-Bedworth model and the different nitrogen diffusion coefficients at different temperatures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。