Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions. Primary HTM cells were cultured under normoglycemic (5.5 mM) and hyperglycemic (30 mM) conditions for seven days, followed by mRNA sequencing (mRNA-seq) to identify differentially expressed genes, with quantitative PCR (qPCR) used for confirmatory analysis. STRING network analysis was performed to predict potential interactions among upregulated and downregulated genes. mRNA-seq analysis revealed 25 significantly differentially expressed genes in high glucose conditions, including upregulated genes associated with oxidative stress, apoptosis, autophagy, immune response, and fibrosis. Notably, TXNIP gene was significantly upregulated, indicating increased oxidative stress and apoptosis in TM cells, while downregulation of autophagy-related genes, such as HSPA6 and LAMP3, suggests compromised protein quality control. Immune response genes, including CCL7 and CHI3L1, were upregulated, suggesting an inflammatory response to oxidative stress. Increased expression of fibrosis-related genes, such as SNAI1, FGF7, and KRT19, and an increase in ECM proteins like Collagen 1 and FN accumulation and fibril formation suggest increased fibrosis of TM in diabetic conditions, potentially elevating IOP. Metabolic changes in diabetic patients could therefore lead to TM dysfunction, impair aqueous humor outflow, and elevate IOP, thereby increasing glaucoma risk. Targeting oxidative stress and fibrosis pathways offers therapeutic strategies to mitigate glaucoma progression in diabetic populations.
High Glucose-induced transcriptomic changes in human trabecular meshwork cells.
阅读:5
作者:Singh Shivendra, Raghavan Srimathi, Patel Niketa A, Soundararajan Avinash, Pattabiraman Padmanabhan P
| 期刊: | Molecular Biology Reports | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 52(1):427 |
| doi: | 10.1007/s11033-025-10525-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
