Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.

阅读:3
作者:Hsu Shen-Hsing, Lo Yueh-Yu, Liu Tseng-Huang, Pan Yih-Jiuan, Huang Yun-Tzu, Sun Yuh-Ju, Hung Cheng-Chieh, Tseng Fan-Gang, Yang Chih-Wei, Pan Rong-Long
Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。