Maximizing biohydrogen production from watermelon peels using Clostridium butyricum NE133: a statistical optimization approach with Plackett-Burman and Box-Behnken designs.

阅读:16
作者:Elerakey Norhan, Rasmey Abdel-Hamied M, Mohammed Youseef M, Aboseidah Akram A, Hawary Heba
BACKGROUND: Biohydrogen production from agricultural waste is a promising strategy to address climate change and energy challenges. This study aimed to optimize the process parameters for biohydrogen production from watermelon peels (WMP) by Clostridium butyricum NE133 using statistical optimization techniques. Initial screening of eight significant variables influencing hydrogen production including, initial pH, incubation temperature, WMP concentration, inoculum volume, yeast extract, tryptone, sodium acetate, and ammonium acetate concentration was conducted by a Plackett-Burman (PB) design. RESULTS: The results showed that four variables including, initial pH (P < 0.001), WMP concentration (P < 0.001), sodium acetate (P = 0.023), and ammonium acetate (P = 0.048) had statistically significant effects on hydrogen production. The model curvature (P = 0.040) indicated that it was significant. Box-Behnken (BB) design under response surface methodology (RSM) was employed to optimize the four selected variables to maximize hydrogen production. The optimal conditions for maximizing hydrogen production from WMP by C. butyricum were: initial pH of 8.98, WMP concentration of 44.75%, sodium acetate 4.49 gL(-1), and ammonium acetate 1.15 gL(-1) at with predicted H(max) of 4703.23 mLL(-1). The determination coefficient R(2) of the model was 0.9902 with the lack of fit F-value was 1.86. CONCLUSIONS: The confirmation experiment revealed only a 0.59% difference between the predicted and experimental hydrogen production, indicating that the optimum conditions were actual with the least error. Improvement of about 103.25% in hydrogen production from WMP by C. butyricum NE133 was achieved after the optimization process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。