Benzothiadiazole versus Thiazolobenzotriazole: A Structural Study of Electron Acceptors in Solution-Processable Organic Semiconductors

苯并噻二唑与噻唑并苯并三唑:溶液可加工有机半导体中电子受体的结构研究

阅读:6
作者:Nanami Watanabe, Waner He, Naoya Nozaki, Hidetoshi Matsumoto, Tsuyoshi Michinobu

Abstract

Despite the rapid progress of organic electronics, developing high-performance n-type organic semiconductors is still challenging. Donor-acceptor (D-A) type conjugated structures have been an effective molecular design strategy to achieve chemically-stable semiconductors and the appropriate choice of the acceptor units determines the electronic properties and device performances. We have now synthesized two types of A1 -D-A2 -D-A1 type conjugated molecules, namely, NDI-BTT-NDI and NDI-TBZT-NDI, with different central acceptor units. In order to investigate the effects of the central acceptor units on the charge-transporting properties, organic field-effect transistors (OFETs) were fabricated. NDI-TBZT-NDI had shallower HOMO and deeper LUMO levels than NDI-BTT-NDI. Hence, the facilitated charge injection resulted in ambipolar transistor performances with the optimized hole and electron mobilities of 0.00134 and 0.151 cm2 V-1 s-1 , respectively. In contrast, NDI-BTT-NDI displayed only an n-channel OFET performance with the electron mobility of 0.0288 cm2 V-1 s-1 . In addition, the device based on NDI-TBZT-NDI showed a superior air stability to that based on NDI-BTT-NDI. The difference in these OFET performances was reasonably explained by the contact resistance and film morphology. Overall, this study demonstrated that the TBZ acceptor is a promising building block to create n-type organic semiconductors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。