Graphene oxide reinforced silk fibroin nanocomposite as an electroactive interface for the estimation of dopamine.

阅读:3
作者:Noor Afifa, Khalid Hamad, Aslam Muhammad, Hayat Akhtar, Khan Ather Farooq, Nasir Muhammad, Chaudhry Aqif Anwar, Nawaz Mian Hasnain
The fabrication of 2D materials and polymer-based nanocomposites deposited on flexible conductive interfaces has unblocked new horizons to expedite reaction kinetics for developing highly selective and sensitive electrochemical biosensors. Herein, we developed a novel biosensing platform, comprising graphene oxide and a silk fibroin-based nanocomposite, drop-cast on a carbon cloth electrode. The fabricated interface was expected to be a robust and miniaturized sensing platform for precise detection of dopamine (DA). Characterization was performed by SEM, EDX, FTIR, XRD, UV-visible spectroscopy, contact angle measurement, fluorescence spectroscopy, particle size, and zeta potential analysis. CV, EIS, DPV, and chronoamperometry demonstrated the superior electrochemical properties of the working interface and revealed its enhanced active surface area, increased conductivity, and accelerated electron transfer rate. The designed interface exhibited low LoD (0.41 μM), admirable stability, good sensitivity (2.46 μA μM(-1) cm(-2)), wide linearity ranging from 100-900 μM, excellent reproducibility, and superb selectivity against dopamine even in the presence of possible interfering analytes. These findings endorse the feasibility of the practical execution of such an integrated system in real sample analysis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。