Discrete choice analysis of health worker job preferences in Ethiopia: Separating attribute non-attendance from taste heterogeneity.

阅读:11
作者:Arora Nikita, Quaife Matthew, Hanson Kara, Lagarde Mylene, Woldesenbet Dorka, Seifu Abiy, Crastes Dit Sourd Romain
When measuring preferences, discrete choice experiments (DCEs) typically assume that respondents consider all available information before making decisions. However, many respondents often only consider a subset of the choice characteristics, a heuristic called attribute non-attendance (ANA). Failure to account for ANA can bias DCE results, potentially leading to flawed policy recommendations. While conventional latent class logit models have most commonly been used to assess ANA in choices, these models are often not flexible enough to separate non-attendance from respondents' low valuation of certain attributes, resulting in inflated rates of ANA. In this paper, we show that semi-parametric mixtures of latent class models can be used to disentangle successfully inferred non-attendance from respondent's "weaker" taste sensitivities for certain attributes. In a DCE on the job preferences of health workers in Ethiopia, we demonstrate that such models provide more reliable estimates of inferred non-attendance than the alternative methods currently used. Moreover, since we find statistically significant variation in the rates of ANA exhibited by different health worker cadres, we highlight the need for well-defined attributes in a DCE, to ensure that ANA does not result from a weak experimental design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。