Parkinson's disease (PD) is characterized by dopaminergic neuron degeneration and the accumulation of neuronal inclusions known as Lewy bodies, which are formed by aggregated and post-translationally modified α-synuclein (αS). Oxidative modifications such as the formation of 3-nitrotyrosine (3-NT) or di-tyrosine are found in αS deposits, and they could be promoted by the oxidative stress typical of PD brains. Many studies have tried to elucidate the molecular mechanism correlating nitroxidation, αS aggregation, and PD. However, it is unclear how nitroxidation affects the physiological function of αS. To clarify this matter, we synthetized an αS with its Tyr residues replaced by 3-NT. Its study revealed that Tyr nitroxidation had no effect on either the affinity of αS towards anionic micelles nor the overall structure of the micelle-bound αS, which retained its α-helical folding. Nevertheless, we observed that nitroxidation of Y39 lengthened the disordered stretch bridging the two consecutive α-helices. Conversely, the affinity of αS towards synaptic-like vesicles diminished as a result of Tyr nitroxidation. Additionally, we also proved that nitroxidation precluded αS from performing its physiological function as a catalyst of the clustering and the fusion of synaptic vesicles. Our findings represent a step forward towards the completion of the puzzle that must explain the molecular mechanism behind the link between αS-nitroxidation and PD.
Tyrosine Nitroxidation Does Not Affect the Ability of α-Synuclein to Bind Anionic Micelles, but It Diminishes Its Ability to Bind and Assemble Synaptic-like Vesicles.
阅读:11
作者:Uceda Ana Belén, Frau Juan, Vilanova Bartolomé, Adrover Miquel
| 期刊: | Antioxidants | 影响因子: | 6.600 |
| 时间: | 2023 | 起止号: | 2023 Jun 20; 12(6):1310 |
| doi: | 10.3390/antiox12061310 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
