Motor practice promotes increased activity in brain regions structurally disconnected after subcortical stroke.

阅读:3
作者:Bosnell Rosemary A, Kincses Tamas, Stagg Charlotte J, Tomassini Valentina, Kischka Udo, Jbabdi Saad, Woolrich Mark W, Andersson Jesper, Matthews Paul M, Johansen-Berg Heidi
BACKGROUND: Motor practice is an important component of neurorehabilitation. Imaging studies in healthy individuals show that dynamic brain activation changes with practice. Defining patterns of functional brain plasticity associated with motor practice following stroke could guide rehabilitation. OBJECTIVE: The authors aimed to test whether practice-related changes in brain activity differ after stroke and to explore spatial relationships between activity changes and patterns of structural degeneration. METHODS: They studied 10 patients at least 6 months after left-hemisphere subcortical strokes and 18 healthy controls. Diffusion-weighted magnetic resonance imaging (MRI) was acquired at baseline, and functional MRI (fMRI) was acquired during performance of a visuomotor tracking task before and after a 15-day period of practice of the same task. RESULTS: Smaller short-term practice effects at baseline correlated with lower fractional anisotropy in the posterior limbs of the internal capsule (PLIC) bilaterally in patients (t > 3; cluster P < .05). After 15 days of motor practice a Group × Time interaction (z > 2.3; cluster P < .05) was found in the basal ganglia, thalamus, inferior frontal gyrus, superior temporal gyrus, and insula. In these regions, healthy controls showed decreases and patients showed increases in activity with practice. Some regions of interest had a loss of white matter connectivity at baseline. CONCLUSIONS: Performance gains with motor practice can be associated with increased activity in regions that have been either directly or indirectly impaired by loss of connectivity. These results suggest that neurorehabilitation interventions may be associated with compensatory adaptation of intact brain regions as well as enhanced activity in regions with impaired structural connectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。