Mammography is the gold standard technology for breast screening, which has been demonstrated through different randomized controlled trials to reduce breast cancer mortality. However, mammography has limitations and potential harms, such as the use of ionizing radiation. To overcome the ionizing radiation exposure issues, a novel device (i.e. MammoWave) based on low-power radio-frequency signals has been developed for breast lesion detection. The MammoWave is a microwave device and is under clinical validation phase in several hospitals across Europe. The device transmits non-invasive microwave signals through the breast and accumulates the backscattered (returned) signatures, commonly denoted as the S21 signals in engineering terminology. Backscattered (complex) S21 signals exploit the contrast in dielectric properties of breasts with and without lesions. The proposed research is aimed to automatically segregate these two types of signal responses by applying appropriate supervised machine learning (ML) algorithm for the data emerging from this research. The support vector machine with radial basis function has been employed here. The proposed algorithm has been trained and tested using microwave breast response data collected at one of the clinical validation centres. Statistical evaluation indicates that the proposed ML model can recognise the MammoWave breasts signal with no radiological finding (NF) and with radiological findings (WF), i.e., may be the presence of benign or malignant lesions. A sensitivity of 84.40% and a specificity of 95.50% have been achieved in NF/WF recognition using the proposed ML model.
Radiation-Free Microwave Technology for Breast Lesion Detection Using Supervised Machine Learning Model.
阅读:4
作者:Rana Soumya Prakash, Dey Maitreyee, Loretoni Riccardo, Duranti Michele, Ghavami Mohammad, Dudley Sandra, Tiberi Gianluigi
| 期刊: | Tomography | 影响因子: | 2.200 |
| 时间: | 2023 | 起止号: | 2023 Jan 12; 9(1):105-129 |
| doi: | 10.3390/tomography9010010 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
